In einem zweiten Experiment st?rt sie die gleichm?ssige Ruheatmung jeweils nach etwa vier Zyklen durch eine einmalige gr?ssere Luftzufuhr. Str?mt die Luft danach wieder gleichm?ssig ein und aus, sinkt die Spannung von 25 auf 15. ?Wir vermuten, dass tiefe Atemzüge von Zeit zu Zeit wichtig sind, um die Oberfl?chenspannung zu senken und so das Atmen zu erleichtern.?
Zur Veranschaulichung hat Maria eine Pr?sentation vorbereitet. Im Seminarraum erkl?rt sie, dass sich unser Atmungssystem von der Luftr?hre über die Bronchien und Bronchiolen bis zu den Alveolen mehr als zwanzigmal gabelt. Die Alveolen ganz am Ende dieses B?umchens bilden ein Netzwerk aus mehreren hundert Millionen Bl?schen, verbunden durch Poren. Diese Lungenbl?schen füllen sich beim Einatmen und entleeren sich beim Ausatmen wieder. Damit sie in leerem Zustand nicht kollabieren, sind sie mit dem Surfactant ausgekleidet.
Bis zum tiefen Seufzer
Zurück im Labor füllt sie das tierische Surfactant nun in eine andere Versuchsanlage. Sie erinnert an eine riesige Spinne mit edlen, silbernen Beinen. In der Mitte h?ngt von oben eine dünne Nadel scheinbar schwebend über dem Surfactant. Weltweit gibt es nur eine Handvoll dieser einzigartigen Apparaturen, entwickelt im Labor an der ETH. Im Keller hat Maria die natürliche Atmung simuliert: einige leichtere Atemzüge, ab und an ein tiefer. Hier im Obergeschoss simuliert sie mehrere Atemzüge der leichteren Ruheatmung, dann graduell immer tiefere Atemzüge, zuletzt die tiefen Seufzer. Durch das Dehnen und Zusammenziehen ?ndert sich die Fl?che des Surfactants. Dabei misst die Nadel die Oberfl?chenspannung. So kann Maria herausfinden, welchen Einfluss die Atemtiefe hat. Im Moment scheint es so, dass die Ausdehnung jener Faktor ist, der die Oberfl?chenspannung senkt und das Atmen erleichtert.
?Die Situation in der Lunge ist natürlich viel komplexer?, sagt die Doktorandin schon fast entschuldigend. ?Aber wir sind Materialwissenschaftler und wollen die einzelnen Eigenschaften eines Materials m?glichste pr?zise charakterisieren und entkoppeln deshalb das komplexe Zusammenspiel der verschiedenen Kr?fte mit Absicht.?
Maria arbeitet an diesem Morgen noch an einer dritten Versuchsanlage. Unter dem Mikroskop liegt ein kleiner Ring mit einem Loch in der Mitte. Er ist umgeben von kleinsten Poren. Auch er ist mit dem Surfactant gefüllt. ?bt Maria nun über eine Apparatur Druck auf die Flüssigkeit auf, wird der Film dünner – bis er irgendwann reisst. ?Das ist so gewollt?, sagt Maria schmunzelnd. Sie erinnert nochmals an ihre Pr?sentation im Seminarraum. Die Alveolen, die kleinen Lungenbl?schen, sind durch Poren miteinander verbunden. Es k?nnte sein, dass bei der Atmung der dünne Surfactant-Film reisst, um den Druck innerhalb der Alveolen via Poren auszugleichen.
Inhalieren statt injizieren
Das Surfactant ist eine geheimnisvolle Flüssigkeit, die Maria sichtlich fasziniert. Bei ihren materialwissenschaftlichen Experimenten treibt sie immer auch die medizinischen Fragestellungen an. Die Injektionen bei den Frühgeborenen zum Beispiel. Es gibt Ans?tze, das Surfactant nicht über eine Injektion, sondern nicht-invasiv über eine Atemmaske in Form von Aerosolen in die Lunge zu bringen. ?Wir wollen mit unserer Forschung herausfinden, was die besten Parameter sind, um diese Technik zu verbessern?, fasst Maria zusammen. ?Wenn wir die Mechanismen verstehen, k?nnen wir den Medizinern helfen, ihre Werkzeuge zu verbessern.?
Maria, die quirlige junge Materialwissenschaftlerin, scheint mit viel Energie, Motivation und Ausdauer an diesem Ziel zu arbeiten.