Endometriose mit KI schneller diagnostizieren
Das ETH-Spin-off Scanvio hat einen Algorithmus entwickelt, mit dem sich Ultraschallaufnahmen der Geb?rmutter automatisiert auswerten lassen. Dieser soll es ?rzten erm?glichen, Endometriose in Zukunft schneller zu diagnostizieren.
- Vorlesen
- Anzahl der Kommentare
In Kürze
- Etwa zehn Prozent aller Frauen im geb?rf?higen Alter sind von Endometriose betroffen. Die Wucherungen der Geb?rmutterschleimhaut führen regelm?ssig zu starken Schmerzen bei der Monatsblutung.
- Das ETH-Spin-off Scanvio hat einen Algorithmus entwickelt, der Gyn?kologinnen und Gyn?kologen helfen soll, Ultraschalldaten der Geb?rmutter besser zu interpretieren und so Endometriose schneller zu diagnostizieren.
- Die Diagnose von Endometriose erfolgt heute meist mittels Bauchspiegelung. Dieser belastende und teure Eingriff soll durch den Algorithmus von Scanvio künftig viel seltener notwendig sein.
Endometriose ist weit verbreitet. Weltweit leiden etwa zehn Prozent aller Frauen im geb?rf?higen Alter daran. Wobei ?leiden? w?rtlich zu nehmen ist. Dauert es doch im Schnitt acht bis zw?lf Jahre bis diese gutartigen Wucherungen der Geb?rmutterschleimhaut (Endometrium) im Bauchraum diagnostiziert werden. Jahre, in denen die Frauen meist schon vor und bei jeder Monatsblutung starke Schmerzen ertragen müssen.
Um Endometriose zuverl?ssig zu diagnostizieren, setzen viele Gyn?kologinnen und Gyn?kologen bis heute auf eine Bauchspiegelung unter Vollnarkose. Dieser Eingriff ist jedoch nicht nur aufwendig und belastend für die Patientinnen, sondern auch relativ kostenintensiv. Bei den meisten Patientinnen liesse sich Endometriose auch mit Ultraschallaufnahmen diagnostizieren. Dies erfordert allerdings eine gewisse Erfahrung, da die sogenannten Endometriose-Herde leicht übersehen werden k?nnen.
Der KI-Experte Fabian Laumer und der Gyn?kologen Michael Bajka haben deshalb im Sommer 2023 das Spin-off Scanvio gegründet. Ihr Ziel: Ein Algorithmus soll künftig ?rztinnen und ?rzten dabei unterstützen, die Ultraschalldaten der Geb?rmutter w?hrend der ersten Untersuchung zu interpretieren und so Endometriose deutlich zuverl?ssiger und schneller zu diagnostizieren. Fachliche Unterstützung erhalten sie vom ETH AI Center sowie ihren zwei Mitbegründern, ETH-Informatikprofessor Joachim Buhmann und Julian Metzler, Endometriose-Spezialist am Universit?tsspital Zürich.
Unternehmer per Zufall
Dass Fabian Laumer heute medizinische L?sungen entwickelt, hat er gleich doppelt dem Zufall zu verdanken. Denn obwohl ihn Medizin und Biologie schon als Kind faszinierten, hat er zun?chst Elektrotechnik und Informationstechnologie studiert. Erst bei seinem Master konnte er Künstliche Intelligenz (KI) und Medizin miteinander verbinden. ?Durch Zufall erfuhr ich, dass die Forschungsgruppe von Joachim Buhmann eine Masterarbeit über die KI-basierte Analyse von Ultraschalldaten des Herzens ausgeschrieben hatte?, erz?hlt Laumer. Sofort bewarb er sich – mit Erfolg.
Nach seinem Masterabschluss setze er die Forschungsarbeit im Rahmen einer Doktorarbeit fort. Und erneut kam ihm der Zufall zur Hilfe. Michael Bajka kontaktierte seine Forschungsgruppe mit der Frage, ob KI bei der Erkennung von Endometriose eingesetzt werden k?nnte. Mit seiner Anfrage war der auf Endometriose spezialisierte Gyn?kologe bei Fabian Laumer genau richtig. Der ETH-Forscher entwickelte im Rahmen seiner Doktorarbeit einen Algorithmus, mit dem Ultraschalldaten des Herzens besser interpretiert werden k?nnen. Diesen Ansatz übertrugen sie nun auf die Geb?rmutter.
Mit 2D-Aufnahmen zum 3D-Modell
Laumer und Bajka entwickelten einen Algorithmus, der Pathologien auf den Ultraschallbildern der Geb?rmutter erkennt, die für das menschliche Auge oft schwer oder gar nicht zu sehen sind. Dafür trainierte Laumer den Algorithmus mit Ultraschallbildern und Daten von Patientinnen. ?Die Anzahl Schwangerschaften und Kaiserschnitte, das Alter oder die Zyklusphase - all das hat natürlich einen Einfluss auf das Aussehen der Geb?rmutter?, erkl?rt er.
Aktuell zeigt der Algorithmus die Endometriose-Herde bereits durch farbige Markierungen bei 2D-Ultraschallaufnahmen an. L?uft die Entwicklungsarbeit wie gewünscht, hofft Fabian Laumer bis Ende des Jahres ein 3D-Modell der Geb?rmutter zu generieren, auf dem alle Wucherungen und Verwachsungen deutlich markiert sind. So k?nnten Gyn?kologinnen und Gyn?kologen die Endometriose-Herde genau lokalisieren und die Schwere der Erkrankung besser einsch?tzen.
Standards für Endometriose Diagnose
Damit die KI-L?sung von Scanvio m?glichst zuverl?ssige Resultate liefert, m?chten Bajka und Laumer zudem festgelegte Standards für die Ultraschalluntersuchung auf Endometriose definieren. Eine Software mit integrierter KI soll darum künftig aktiv durch die Untersuchung führen. ?So erreichen wir eine Standardisierung und zugleich stellt das Programm sicher, dass die gesamte Geb?rmutter abgebildet wird.?
Um die Forschung voranbringen zu k?nnen, ist das Spin-off aktuell auf der Suche nach weiteren Investoren und führt erste Gespr?che mit Herstellern von Medizinger?ten. L?uft alles nach Plan, ist ein Markteintritt Ende 2025 denkbar. Wobei dann noch verschiedene Zertifizierungen anstehen, damit die intelligente Software in Medizinger?ten eingesetzt werden darf. Für Laumer steht fest: ?Mein Ziel ist es, dass Frauen künftig innerhalb eines Jahres eine verl?ssliche Diagnose erhalten?.
Hinweis: Dieser Artikel wurde am 31.05.2024 aktualisiert, um die Namens?nderung des ETH-Spin-off dAIgnose zu Scanvio widerzugeben.
Weitere Informationen
- externe Seite Scanvio
- Institut für Maschinelles Lernen
- Doktorarbeit Fabian Laumer - Deep Learning for 3D Heart Shape Reconstruction in Echocardiography