Science fiction films portray the idea relatively simply: the terminator – who either tries to destroy or rescue humanity – is such a perfect humanoid robot that in most cases it is superior to humans. But how well do humanoid robots perform nowadays away from the cinema screen? Precisely this question is addressed by a new study drawn up by lead author Robert Riener, Professor of Sensory-Motor Systems at ETH Zurich and founder of the Cybathlon, that is being published today in the robotics journal Frontiers in Robotics and AI.
Comparing apples with apples
The first scientific challenge was to develop criteria that permit a meaningful comparison between humans and machines. An industrial robot painting car bodies on a production line does this faster, for longer and more precisely than a human. It is especially developed for this but also does not have any other abilities.
Riener therefore excluded such robots from the study: “We humans shape our environment according to our criteria and needs. If robots are to support us in a meaningful way, they need to work in this manmade environment. We therefore quickly arrived at robots that are similar to humans, at least anatomically.” It is for this reason that Riener exclusively examined humanoid robots for the study and integrated 27 relevant specimens into his research.
Yet the researchers also defined certain selection criteria within this robot type. “For example, for a robot that has rollers rather than legs it would be fairly easy to roll faster than a human can run – but we didn’t want to compare apples with pears,” explains Riener. Only those robots were therefore selected that had two or four legs so that they were also able to climb steps. They also need to have a slim figure in order to pass through doors, and a certain height (at least 50 cm) with arms and hands (or extendable by arms and hands) so that they can also pick up objects on a tray or shelf. In order to be able to work with and support humans, they should also be quiet and not give off any exhaust emissions.