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• Field tests during the development phase ensure that
• The system performs according to the intended specifications
• Unexpected reactions of the system are eradicated

• The efforts caused by the testing of integrated safety functions are high
• Costs are expected to grow dramatically considering automated driving

Conclusion
• Real world traffic data generation with drones and Deep Learning
• Clustering and Classification method for automated traffic scenario

categorization developed and validated with real world data

Objective
• Contribute towards a reduction of kilometers driven for validation
• Automated identification, analysis and assessment of traffic scenarios

• Generic representation of traffic scenarios
• Feature definition to analyze traffic scenarios with machine learning
• Group scenarios and extract representatives for template generation

• Data driven approach: data structure determines the scenario
description and feature selection

• Feature set is provided to the clustering process, which delivers the
similarity matrix

• Assigning classes according to similarity matrix and train supervised
model in order to assign new traffic scenarios
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Figure 5: Unsupervised and supervised machine learning architecture for scenario categorization
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Vorhaben: Sicherheit für Alle – Forschungs- und Innovationspartnerschaft in der Region für globale Fahrzeugsicherheit
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Data Generation
• Videos recorded with a commercial drone

at 50m, 75m and 100m height
• Vehicle equipped with a D-GPS RTK sensor

(1cm accuracy)
• Vehicle driving in spirals on a test track to

capture different poses and image regions
• To ensure repeatability, the trajectory

was driven a by driving robot
Figure 1: Trajectory driven on test track, 

black: D-GPS, red: estimation
Framework

Figure 2: Fixed frame with image registration (left)

• Pre-Processing
• Image Resolution: 1920x1080 px (GSD: 3.5cm @ 50 m height)
• Image registration: fixed frame for all images in a sequence
• Detection
• Mask R-CNN: applied transfer learning and adjusted parameters

with own, manually labeled data set.
• Semantic shapes used for rotated bounding boxes
• Post-Processing:
• Relief Displacement
• Benchmark: mapping coordinate frames
• Synchronization of both data sources
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Figure 3: Relief displacement

Results

Figure 4: Estimated states variables against the reference sensor for one test drive
with high longitudinal and lateral dynamics

Table 1: Accumulated frequency of the error: Depicted for all three altitudes, 
both training weights and corrections

Cluster Analysis

Figure 6: Clustering results with normalized feature value representation (left) 
and representative scenarios derived from clusters (right)
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• Unsupervised and Supervised Learning with the Random Forest 
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