Physik des Experiments
Warum dieses Experiment an der ETH Zürich? Die beiden akustischen Spiegel am 2024欧洲杯开户_欧洲杯APP下载-投注|官网 H?nggerberg zeigen im Grossen, wie in den Physik-Labors mit kleinsten Teilchen experimentiert wird. Das Experiment ist vorübergehend wegen Bauarbeiten eingelagert. Eine Wiederinbetriebnahme ist per Frühsommer 2022 geplant.
Spielerisch Forschung erleben
Ein lange bekanntes Ph?nomen illustriert moderne Forschungsmethoden. Seit der griechischen Antike bis heute wird mit gew?lbten ?Spiegeln? experimentiert, um Wellen oder Teilchen zu bündeln und dadurch zu verst?rken: von Schall- und Wasserwellen über Radio- und Lichtwellen bis hin zu Materiewellen von Elektronen. Die akustischen Spiegel illustrieren in grossem Massstab, was in den Labors auf dem 2024欧洲杯开户_欧洲杯APP下载-投注|官网 H?nggerberg in manchen Experimenten zur Quantenforschung geschieht. Diese Spiegel sind funktional klassisch geformt, doch ihr Design ist dank der Zusammenarbeit zwischen den 2024欧洲杯开户_欧洲杯APP下载-投注|官网n Physik und Architektur einzigartig.
Spiegel in der Quantenforschung
In der Grundlagenforschung wird das Verhalten kleinster Teilchen wie einzelner Ionen oder Photonen erforscht. Die Wellenl?ngen des sichtbaren Lichts messen zwar nur ein Millionstel eines Meters. Dennoch verhalten sich Lichtwellen ?hnlich wie Schallwellen, die Wellenl?ngen im Bereich eines Meters aufweisen. Lichtteilchen und Schall, beides kann zwischen Spiegeln eingefangen und dadurch verst?rkt werden. In der Quantenforschung dient die Verst?rkung dazu, diese extrem kleinen Teilchen besser beobachtbar zu machen.
Die Schallwellen dehnen sich aus. Nicht alle Schallwellen werden vom gegenüberliegenden akustischen Spiegel aufgefangen. Auch von den zurückgespiegelten Schallwellen verschwinden einige in die Umgebung und werden unh?rbar. Dieser Schall wird letztlich in eine andere Form von Energie, in W?rme, umgewandelt. Die digitale Animation unter ?Wie wird Schall gespiegelt? illustriert das gut.
?hnlich wie im Wasser entstehen auch in der Luft Wellen, die wir als Schall wahrnehmen. Bei diesen Wellen handelt es sich um Dichteschwankungen in der Luft, die sich von der Schallquelle her ausbreiten. Die Schallwellen k?nnen an harten Oberfl?chen reflektiert werden. Auch das Echo in den Bergen entsteht so. Schon vor 2500 Jahren nutzten griechische Architekten den Effekt für den Bau von Theatern.
Beim Sprechen breiten sich die Schallwellen zun?chst kugelf?rmig in alle Richtungen aus. In der Skizze oben und der digitalen Animation unten ist diese kugelf?rmige Ausbreitung zweidimensional als gebogene Linie dargestellt. Wenn die Schallwellen auf den gew?lbten akustischen Spiegel treffen, werden sie reflektiert und dabei ?gerade gebogen?. Sie k?nnen sich nun gerichtet als ?ebene Welle? ausbreiten und treffen deshalb genau auf den zweiten akustischen Spiegel. Dort werden sie wiederum reflektiert und auf das Ohr der lauschenden Person gebündelt. Ohne die beiden Spiegel w?re der gr?sste Teil der Schallwellen entkommen und somit unh?rbar.
Schallwellen – Forschung an der EMPA
Digitale Animation der Schallwellen zwischen zwei akustischen Spiegeln, die durch zwei gebogene Linien dargestellt sind – man sieht die Spiegel also von oben. Der Schall kommt von der linken Seite. Intensives Rot symbolisiert einen hohen ?berdruck, intensives Blau einen starken Unterdruck.
Vor allem mit hohen T?nen l?sst sich modellhaft digital untersuchen, wie sich Schall (pr?ziser: Schalldruck) ausbreitet und von Hindernissen, hier den akustischen Spiegeln, reflektiert wird.
Die akustischen Spiegel auf dem 2024欧洲杯开户_欧洲杯APP下载-投注|官网 H?nggerberg sind sph?risch, das heisst als Teil einer Kugel konstruiert. Dadurch entsteht ein gegen innen gew?lbter ?Teller? der Schallwellen fokussiert zurückspiegelt.
Ein solcher Hohlspiegel besitzt einen Brennpunkt, den Fokus, an dem einfallende ebene Wellen gebündelt werden. Je n?her sich der Mund des Senders sowie das Ohr des Empf?ngers am Fokus des jeweiligen Spiegels befinden, desto mehr kann man h?ren. Je h?rter und glatter die Oberfl?che der beiden akustischen Spiegel ist, umso besser funktioniert das Prinzip. Harte und glatte Oberfl?chen reflektieren Schall besser als weiche und raue Fl?chen.
Nicht nur Schallwellen, sondern alle Arten von Wellen k?nnen mittels Spiegel gebündelt werden. Dieses Prinzip machen sich Physikerinnen und Physiker heute für die aktuelle Grundlagenforschung zunutze, auch an der ETH Zürich. Sie fokussieren elektromagnetische Wellen wie Licht- und Radiowellen, aber auch Materienwellen von Elektronen.
Insbesondere in der Quantenforschung ist es wichtig, kleinste Signale zu bündeln und dadurch beobachtbar zu machen. Nutzt man zwei gew?lbte Spiegel, um Licht hin und her zu reflektieren, kann man damit sogar einzelne Lichtteilchen, sogenannte Photonen, einfangen und verst?rken.
Quantenkommunikation und Sensoren
Auch die Wechselwirkung von Atomen mit Photonen kann auf diese Weise untersucht werden. Dies ist beispielsweise für die abh?rsichere Quantenkommunikation wichtig. Sogar der Rückstoss von Photonen, die an einem Spiegel reflektiert werden, l?sst sich sicht- und nutzbar machen. Dies bildet die Grundlage, um Sensoren zu bauen, die eine bisher unerreichte Empfindlichkeit besitzen und dadurch extrem feine Signale empfangen k?nnen.
Schall und L?rm sind überall
T?glich ist er um unsere Ohren und doch besch?ftigen wir uns im Alltag wenig mit der Vielfalt von Schall. Ein Blick auf die externe Seite Website der Abteilung Akustik / L?rmminderung der Empa zeigt, wie vielschichtig und spannend das Thema ist. Kurt Heutschi unterstützte die Studentinnen externe Seite im MAS Digital Fabrication als beratende Fachperson für Akustik.